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REPORT No. 323

FLOW hTD FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID
--

.

IN FIVE PARTS

By A. F. ZAHX

SUMMARY

This report, swbrnitted to the .iWional Aduisory Committee for Aeronautics for puldicat ion, is
a stigfitly retied form of U. S. ATauyAerodynamical .Ldoratory Report Xo. “380, complkted for the
Bureau of Aeronautics in Norember, 1928. The diagrams and tableswere prepared by Mr. 1? A.
.Zinden; the measurements gicen in Tables 9 to 11 tcere made for this paper by Hr. R. E. Smith,
both members of the Aeronauttis Sta~.

Part I gices a general method for finding the steady-jlow relocity rdatiw to a My in plane
curvilinear motion, whence the pressure is found by Bernoulli’s energy principle. Integration of
ihe pressure swppltis basic forrnui!usfor the zonal forcek and moments on the rerolcing body.

Part II, applying thti steady-$ow method, finds the velocity and pressure at all points of the
fiw inde and outside an ellipsoid and some of its limiting forms, and graph8 tfiose quantiies for
the latter forms. In some useful cases txrperimental pressures are plotied for comparison with
theoretical.

Part III $nds the pressure, and thence the zonal force and moment, on hull’s in plane mmi.-
linear $ight.

Part IV deriixs general equations for the rewdtant jluid forces and moments on ttiymmetrical
bodies mornng through a perfect $uid, and in some cages compares tle moment dues with those
found for bodies moving in air.

Part J’furnishes reudy formulus for potentiul coefiientg and inertia coej’icients for an eli%psoid
and tis limiting forms. Thence are deticed tables giring numerical ralues of those coejtcients for
a cornprehenm”terange of shapes.
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PARTI

INTRODUCTION .—

~TEADY-FLOW~h!fETHOD.-1It some few knol~ cases one can compute the absolute particle
velocity g’ at any point (z, y, z) of the flow caused by the rotation of a body, say with uniform
angular speed Q, in an Mlnite inviscid liquid otherwise “still. Thence, since # is unsteady at
(x, y, z), the instantaneous pressure there is found by Kelvin’s formula pJp = - &p/M- q’’/2, p,
being the supervacuo pressure there, and q the velocity potential.

.

Otherwise superposing upon said body and flow field the reverse speed – !2, about the same
axis, gives the same r+tive velocity q but which now: is everywhere a steady space velocity.
In the body’s absence the cticular flow speed at the radial distance R would be qO=.– QR.~ If
the fixed body’s presence lowe~..the speed at (x, y, z) from go to g, it obviously begep there the
superstream pressure

p=;P@$-g*)_-r----_-,---=---=------=-_--_,--.-,=-(l)._ ,.=

or in dimensioriless form, a being some fixed length in the body,

(11)’p ‘–$(l– F/g/) --___ -:----------------------
lpa%l~ . .
~

The present text finds p by this steady-flow method only, and appIies it to streams abgmtvarious
forms of the ellipsoid and its derivatives.

.-
—

The superposed circular flow, qO = – OR = – ?@/bR, has the stream-function

#=;m___---_ -_------:---------_---_--_---(2)

which, for rotation about the z axis, plots as in Figure 4. This flow has no velocity potential,
since b+/bR # O.

GENERAL FORMULASFOR VELoc1TY””CoMPoNENm3.-1n plane flow,’ w @ lmown, a partiCle
at any point (z, y) of a line s drawn in the fluid has the tangential and normal velocity com-
ponents

qo a+– qn=an–b8------------------- (3)_——

----- . . . . . . . . . ...7 ..:- . . _.>._:_~

I TM velooityentnllathecentrifwalprwnreP,-PWW2 ataildfstmces,R- {Wfrom W rdation@ Ofthe ohular - hereaesumd
tobeomstra!nedbya czmtalclowtcylfnderimlnitdyIarxe.Tothe OmanrfcPreamreZM-Pw * ~ add~ mYarhl~y StntioWW-SM%
auobanthatduotomJgM@otharImmemdform.

IAtw SWbcapointofthebodyQietherelmitgofWashorslip,Vihetherthebodymovesor@ it ~ f’~+~ t~ Wfea’encaoftbetansentiai
.—

mamveIocftkaoftheflnldandsurfacepoint. IfthebodYladredg“i.o,q.#1.
IPlaneflow,VIZtwo-dimensionalSow,ManlWmmnsdowinnPlanqthe* sPPIIeaRIMtoawa flowthatk thasameinallpmafIelplanes.
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FLOW AND FORCE EQUATTOIWFOR A BODY RJWOItVIN-GIN A FLliTO 413

where 6s, thaare elements along the line and its normtd. & USUR1,g,, gs are reckoned positive
respectively along &, &npositive; e. g. Figure 2. The components Amg x, y me.

,=$= .?4
ax------------- (4)

In soIid flow (3), (4) still hoId for p, and further w= bqpz. In
general, @=u2+2?+ti=q?+g.2. At any point of a surface drawn in the
fluid g, is taken in the plane of g and q=. All these velocities are referred
to fixed space.

SURFACEl’ELOCITY.-A tied body in any stream, since q.= O, has
the surface flow velocity g =g~, -which put in (1) determines the surface
pressure.

M any surface point of an imme~ed moving body q. is the same for
body and fluid, hence is known from did kinematics. Thus, if the body
is any cylinder rotatbg as in Figure 1,

~x=–~~/d9=~ s~(fl-6)=~1=Q(mx-zy) .------(5)

where the symbols are as defied in Figures 1, 2.
More generalIy, for any surface with velocities Q=, QM,!2Zabout the

fx~esz, y, 2,

gm= (nV–mZ)QZ+ &-nz)Qy+ (mx–ly)Q.--------_ -_(6)

where 1, m, n are the direction cosines of the surface normaI, as in (131).

..-. —

Fmum l.-C0m~nent wIocl
tiesa.,g, of mrfecepintof
enyrigid cyllnder hrmingan-
Wmnabtmyti
PemlIel to Me length. f..
CiiI; gt=sk bid? sin @–

#) =–R dl?ldt-ru-ir, I, m
belog direction e@nes of the
normelto the cantrmr element
dset (z,Y). Iftbebody rotates

—

fn a Uufd, w+/tM+/tM.
At eny surfacepoht Q. Is the
same fm brdy snd tlrdd; Ri
dIEerentermptat pointsofno
Slippage

●

If at the same time the body has translation components, “U, T, ~ ~ong z, y, z, (6) must be .—
increased by 1D+ -mV+ mW, giving

!7a=~(~+4-@J +~(~+~z–@ +n(T-Y+@*-zfl.) ---(7)

q-r sinp;$ tent=tml v-$ ten19-

; $ bl-r Sk (E+); i%-r em (8–B).
f-u-d @, e=- beinge52en-
trkdty ofoh

But (5), (6), (7) express q= only at the model’s surface.
Equations (1) to (7) obtain whether the fluid is inside or out-

side the body.
ZOXAL FORCES AND MOMENTS.-FOr any ylinder spinning

about z, as irt Figure 1 or 5, surface integration of p gives, per
unit of z-tie Iength, the zonaI4forces and moment, respectively,

Y= Jp dx N= fp rdr--_--(8)

where p dy, p &r are the x, y components of the elementary
surface force p ds, and r is the radius ~ector of (x, y). To derive
N we note that p ds has components p r d&p cb along and across
r. Having no moment, p r d# chn be ignored, leaving only p
dr with arm r. Thus, 2N= Jp d(~), which varies as the area of
the graph of P versus P.

.-

.-

_.—

___.

A wmj%.ceof rotation about x, ~pi&ing ~bout its z axis, has zomd forces .—

~=-f fp dy dz Y= f fp &c dz---_-----_------_ -(9)

1Azoneiseny- ofthesnrfmsboundedby twopnrelkl pkrme;In WS text they em meumednrmoel to z, and the zoneheethe bounding
.-

pienmr+ z-=+zI; in Pert III other plsneeere ~ e. g. x=m, r-a.
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If da,, ds. are elementuf its lines of meridian and latitude, M in F@re 3, the mo~w~ about
z of p ds~ ds. is p T d? ds. in the PISIV .W=O~and. P r. .dr @W CO?~ ‘P r dr. dz=d N for any
meridian phme; hence the zonal moment is

— L..
—.

~= J~rdr-..__ ..--_ --------___ .---------[lO)

s.?9
where P= p dz = dY/dx, is the y-wise prsasure-force per unit length x-wise.6 Thus, as for

–a
(8), N varies as the area of the graph of P versus P. @O one notes that

Y= JPdx
J

““ “P=ZQ 2’ p Cosu do-------. ---------- (lol)
o

Since p is symmetricrd kbout the x axis, Z= O= Y-=L = X= A7; viz, the assumed zcme is
not urged along y, z or about z, y, z. In general, X is not zero for such a zone, but is zero for

the whole model,.. The zortal Y, ~ are zero for steady
rotation about C.n a frictiordezs liquid, because p is
symmetrical about. the x axis; but are not so in a viscid
fluid, nor for accelerated spin in a perfect fluid.

For trisymrnetrical surfaces we note also: If the
zones were. formed by planes normal to z, zonal X
would be zero for motion about z; zonal ~ in general ._
not zero; e. g., ”fol a viscid fluid. Similarly for zones
with faces normal lo y.

By (10) the bending moment about the z ordi.&te

s..

._. ,.c
in thepkme y=O is P r dr. This is zero for a fric-

.“~.~r,
“tionless” liqfid; “~~’a +iicid fluid it hicreasei with length

L of zone, . ..

FIGUEES.-Oeomatrladata forprofatespkold. x-a cm lk ad&tion b the pressure fo~cw”and moments--jUSL
V:s-befuvm u-rAUPcosM;Z=b~ v SIUw-r dn considered, due to rotation about z, “a viscid fluid exerts
6 alnm;R=- ~u Ieposltlfe “out~ard;a %
&wPositivees Indicafadby an’ow.%zsqo-b sin q surface friction .s~etrical about the z axis, but aot

treated here.
For anY Mrface S, clearly (f)) still holds and (10) cari be generalized to the usual form

N= J/p(z&–ydg)dz. __-. _-------_ -_.--------..UO~)

.-

.. ”-:-

------ .
b

●

-.

-. —

.— -.. . . ...

GEOMETRICALFORMULAS.—MOSt of the surfaces treati in .t~. text are menlbers Of the ~ ,.
confocal ellipsoid family

@ ~~ ~l?~
~~+~~+x+c~~ =l=.~+~i-k~z- _----------------_ --= (11)

whose semi axes are al= -h, etc. The following I&Rii properties are needed.
The distance from the center .to the tangent plane at the point (z, y, z) of a’b’c’ is

(

z% +
hz= -$+$+7

)
------ --. .. ---— ------------- (12) .

The direction-cosinm of the normal to said plane are

—

! The radiueofthelatitude ckcleIedenotedby ze=ye.
------- .. .- —A...: .. :?=
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The partial derivatives of k me ,

g=21h2 ~A=2m112
ah

by
&=2n71z ~=2ha.-----.--__.-----(14)

M Ore generally for any surface j(z, y, 2)= O, one bows

.aj
1=j&

.af
m ‘Wy ‘=’% ‘=K9+6U+(97-4-----------(’3J

and the distance from the origin to the tangent plane at (x, y, z) is

h,=lx+my+nz=r cos y---- ._-----: ___(12)--:--_--( l2)

7 being the angle between the radius -rector r and the norrmd.
COXyEXTiONS.—k all the text x, y, z have the positive dir&tions shown in Figure 3,

as dso have the x, y, z com-
ponents of velocity, accelera- Y’
t.ion, force, linear momentum.
The angular components A
about x, y, z of velocity, ac-
celeration, moment, momen- A
tum are positive in the re- .
spective directions y to z, z
to x, z to y. The positive
direction of a plane closed
contour s is that followed
by one going round it with
the inclosure on his left, as
in Figure 2; the positive 1 ~m ~~ ~~~~ d ~-$ fm fhid 171t8tfIU ‘ith ‘if-
direction of the normaI n “GL%*44~ h % ‘
is from left to right across s;

angularVelcci&D.–1

and 8sI 6n determine. the positive directions of the tangential and normal flow veloeitjes q‘,

q=, as previously stated. For a closed surface 6n is positi~e outward and & is positi~e
in the direction of one vwdlcing on the outer surface with n on his left.

The word “displaced fluid,” used in treating the motion of a submerged body, usually
means fluid that would just replace the body if the latter were removed.

.—

——
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FLOW AND FORCE EQUATIONS FOR A BODY

PARTIf

REVOLVING IN A FLUID

VELOCITY AND PRESSURE”

(A) BODIESIN SIMPLEROTATION

ELLKPTIC&rmmim.-For an endless elliptic cylinder, of semiaxes a, b, c (= ~), rotating
about c with angular speed QCin an inilnite invisoid liquid, otherwise still, one knows 1

~= –m~,~~= –~m!cil~%~ sin 2T *= +’xha’b’ Cos 2?7.---.-:.-.(15)

FIGUBEs.-streamMw h endksewptto oyhder rotating about its longexfswith uniformangular~elmftyQ; thows+-~ m’. 12E’b’

M ~ with fnmementeA#-.2, Q-1. For fnsfdefluid,+-+ ~ ~ (~~–ti

the geometric symbols being as in Figure 2. For any outer cofifocaI a’b’ the potential coefficient
has the constant-value

m' C=(a+b)z(a' -b')/2a'b'(a' +b')----------_ --_- _-_-_ ---(l6)2

On the model’s surface a’ =iz, V =5; m’c= (a’– iY)/2at.
.

The equipotential lines on either surface cd or a’b’ are its intersections with the corre-
sponding family of hyperbolic cylinders zy = – p/m’ N = const. Normal to the equipotentiak
are the streamlines x = const. Graphs for #= O,0.2, 0.4,”etc., are shown in Figure 5 for a model
having a/b =4. They are instantaneous streadines? and form with the model a constant
pattern in uniform rotation about c in said infinite liquid.

At any outer confoctd a’ti’ the vdocity components are, if K= m’#’b’Q,,

t Proofsof (lb), (2?.),(20),(4U)are foundfrrbooks;e. gwLamb % ~ I&&Il@llq tithcd., exeeptthat Lamb reverses the sign of w $.
-. ,.. .

,Eqnfwdentto@lJ f97nF,-(~~~j~)’2J>t G I#b3iutlre&a3ntrioftieiof izbja%$.— — On ab thinbecomesm’,-@/~~-–@; & (49)

forthe efx~tentfrd coediokntmnh,ma,nk, m’., m’b,m’. in the vulneofF for momjpneml motion.

416
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where dq/ds = I/a’ ~~1– e’z cosz~,as one easily fluds. Alternative ta (17) are

tf,= –m,’cfl=-&cy=–m’$g cos (13+IS) g’== –g’, tan 2~. ---- _.-. -(l7J

Thus for q= O, 45°, 90° (17) and (17,) give #,/flc= – na’w’, o, m’~’. At the model’s surface,
where m’. = (~~z—32)/2ab, (171) become

.-

the latter being h,fl., as in (5).

Ti%ere q’,=0, or cos q= I/JEl wiz, at the stream poIes, clearly x =a’j@l ?f=~’lfi,

2?–$ = a’e’/2 ------------------------- ------- (18) —

a rectangular hyperboIa. (18) is the instantaneous polar strearnhne, e. g., Figure 5, orthogonal ... ... ___

to aLI the confomd ellipses. lfA asymptotes are y= *x; its ~erticw me at z = *se/@; it cuts
--”

-.—.
each ellipse where z/y = a’fl’, viz, on the diagorwds of the ticuscribed rect@e.. For an.

endless thin plate of width % the poles are at y= O, x= + a/fi.
——--——

Superposing – Q, on the body and fluid, and using (2), changes (15] to

+=; (?–m’oa’b’ cas 27)0 ~-------------------------- (19)

Its graph, with A*= 0.2, gives the stresdines iR Figure 6 for the flow ~== – 1 round a fked _ . ___
cyLinder having a/3=4. About the point (O, 1.45) in Figure 6, is a -i-did separated from the
outer flow by the streunline +=4.25. ‘lMs line abuts on the model at the inflow points i, i;
spreads round it and emerges at the outflow points o, o.* The stre@.@s for m. endless thin .:-. ..——
rectangle having 3= O,e=1! are sidar to those of Figure .6, but infinitely crowded at the edg~. ., --, I .=::

The superposed particle velocity – Q contributes to (17J

tf’’=-Q#’ Cos (e–p)= –ML Cf’’==-fzr sin (8–@)=–h,Q._.-___ -_-_(2o) -:

SISOgun= g“~tan (8– P). Adding (17J and (2o) giv= the components qj=#, + g“,, g,=~m+ gum,.
of the resultant flow velocity at any field point. One notes that (2o) are the reverse of gj, g=

. -.—

in Figure 1.
In particular q== Oon the fixed model ahd x, y ues; hence there

g/aQc= –~[m’. cos (6+19) +COS (t?-19)] rffq.=?n’. Cos (d+ P)+cos (e–f?)-----(2l)
\

.-

,. Thug q/q, =l+m’c on thez axis; I–m’=on they axis; and 1 at a -wherem’. =O. The dashed
line in F~e 6 gives q/a$2c=– (1 – m’Jy/a for points on the y a.sis; it crosses y at the whirl

.

center where q= O, viz~ where m~== 1. By (16) m’~1 for the surface of any model having
afi>l + W; ~d there is no ~fi~ if afi<l + ~. Figure 7 shows g/aflCfor the surface of a ...-
modeI having afi =4, m’, = (a*– i5z)/2ab= 15/8.

—

Putting @/~O of (21) in (lJ, where #/a*= cosz~/co#& giv=

p&xz’fPc=(l– [m’= Cos (e+ f?)+cos (0–/?)]2) Cos’ q/cos’ 6---------:---(22) . - ‘—

which is graphed in Figure 7 for ,amodaI hatig all =4.

htegrahg pf&@Fc, as in (8), gives for an inviscid liquid Y=O = A’; X+ O- Fime 7 .. .“ ‘.

delineate%X for this case. —

~ThmFWXIMf, o areidenthl withthosain- a vfz,wheretheSUP@ #In (ZI)h zero;they am W *P *9 5@WtIon **. @tu.
<----
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Foi” thi ‘swfaim~ of an endIess flat pMe. @= O, c= co) tied in the stream – i?,, clearly
m’ ~= a/2fi and generally r COS.(6—8) = O; hence (21) gives

g/aQC=-& cos(@+6)"= -&6ms Tcot2q... ------- __-. -----(Al,)

which equals – ~, O, 1/2 for q= 0°, 45°, 900.. The flow resernbl~ that in Figure 0; it has
twin whirls abreast its middle, stop points at z=+ a]@J and inlinite. velocity at the edges. . .

Putting in (1,) r =Z and qO= –x$.2. gives the plate’s surface pressure

!??”
Pl&W=$-~6= (1–cot’ 2q) Cos’ q---------_ --------_-(22,)

Y
I au

. . .—.

—

. .
., —

I
i o

;\&A.\ i“ -1

<..

-..-..-
.#

,. ...
.- a:

.“
:. ;--

. ...=.
“, . . “~.-..

... . . . .—. -. . :...

.. ..ti

F1OUBEG.-Stmarnlinesabout endles allipth oylinderfixedIn Inti!ti Invkid lIquIdrotatingabout Its Iongads wltbuniformangularspead-n;

ehowe~-~ Q(ri-m’, 8’b’ cos2q)with incrementsA+-J, 0--1. Dotted IinaPIXW3}T.Z-WM9PI@On# ash

which equals –1/4, 1/2, – co forx=.0, &a/.&, &a; viz, for q=90°, 45°, 0, ete, ““ “- ““ ““ ~ ~
PROLATE ~PHEROID.—FOr a prdai% spheroid, of “semiaxes a, ~, c, rotating about c with

speed Q, in an infinite inviscid Iiquid,

.
--_----(23)p=em)$~=-$m’$~’b’ sin 2 qcosu___----------
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the g~metic symbols being as in Figure 3. For any outer confocal spheroid a’fi’c’ (23) has
the known constant. potential caeficient

-% ~_e/=’–3–52 - ~~
m’.= 2e’ ~..

.

9 eat --------------------- (24)

#e (z–e*) h#-6+_~&-

e, e’ being the eccentricities of ab, a%’. Table IV gives surface vaIues of m’c for various shapes
of prolate spheroid.

—.

In the ~z, “ii planes..q= O; in the xy plane, where C.OSu= 1

p= –~m’cflca’b’ sin 2q *= -~m’&a’bf cos 2q--------.------(231)
,,

which, except for m’,, have the same values as (15), entailing-the same polar streamlines (18),
The equipotentials on a’b’c’ are its intersections with the family xy = – p/m’&C= const,

At any point (x, y, z) on a’b’c’ the orthogonal velor,ity components are by (23)

3 P de’ a3dq apdu -
“’==% ““” “’-3~d8,

—L. q’u=&~u-------__”----_-__- (25)

h, ~sg,5sMdenoting Iine eIements aIong the normal, -meridian, and circle of latitude, as in
Figure 3. Since g’n ii abient from (l), we shidl not need it; we merely note thatcm the model’s
surface it is rQCsin (I3– P) cos W, By geometry dv/d8v =?’ cos (0+ fl)/a’V cos 2V,4 dufdsa =.
l/b’ sin q; hence

!2’.= —m?@er cos (6+ p) cos ‘U” q’u=m’,fl~ cosfl sin u--_--------(25J

For u= O, g’ ,(= @q) dHers only by m’. from (17J for an @iptic cylinder; also r cos ~=Z .“.

!l/.W-rn’Ctie sin u=O, &@J, for w=O, w/2.
Superposing – Q, on the above system adds to (25J, as easiIy appeam

. .

!?”*= –w Sk (6–B)Cos ~ fl’’?=”-m’ Cos (6.–B) c~s ~ q“u=~~ COS~ sin u---(26)

Ati the now fixed surface and on the x, y a.ses q.= O= g’n + q“.; hence summing (25J, (26)
gives there

gn= – [m’, cos (6+ 9)+ cos (d.– 8)] Q~ cos =~~ cos w
q.= (1 +m’.)fh? Cos pein w-q. Sinm I

------- . . . . . . . ---- 27

Thus for w= O dearly g/gO= ~’. cos (0-i-p)+ cos ‘[6–P), &f&ring fronl (21) only by m’,; for
w= r/2, q/go= — (1+ m’,), a formula like that for a negative flow.go across a cylinder; for u = OO,! -_

d

-. —... .. . . .-

900, 45°, q=g,, 7j., ;VT+FJ. On the z “ii= ~go= 1+ m’,; on the y axis q/gOQ”l–m’c>O

everywhere, hence no whid centers on y.
Figure 8 shows [g/afl,l on the meridians w= O, + 45°, + 90° of a fixed spheroid with a/b =4.

Distributions symmetrical with these occur on the opposite half of the surface. Noteworthy
isqforu=&90°. By (27) it is q= + [1 +.~’JQgc; hence the stiaight-line graph in Figure8.

Figure 8 shows also, for these meridians, the pressure computed with the working formula,
derived from (1,), (27).

~+ ~6aw+B”sbzw-------(28)-_----”.----.-(28)
1
~pa2@C

-.
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where ~ = (1 – [m’~ cos (I9+ ~) + cos (8- 6)]2) COS2T/COSz#l,.?3= —m’C(2 + m’J cos2~. Here m’O=
,689 by Table lV. The crosses and circles, giving experimental vrdues taken from Reference 3,
show good agreemen!.with (28) for a considerable pan of the surface. For cos u = O,p K l?azz;
or the graph is parabolic. -.

Integrating p, as in (9), (10), gives for an inviscid liquid Y= O= N, X+ O. Figure 8 poitrays
X computed from theory and experiment.

ELLIPSOiD.-FOi .ari dlipsoid, of semiaxes a, b, ~ along z, y, z, rotating about c with speed
G, in an infinite inviscid liquid, otherwise still,

—

p=–m’cn$y -------------------------------- (29) ““-‘- ‘-”

which for any outer confocal ellipsoid a%’c’, has the constant potential coefficient

m’, =O@–a) !.2= “““
az—bf

2 (a’– bz) – (a’ + b’) (flo– q) - --.---. -.------L(3O)

the Greek lettem being as in Part V. Surfatie-viiluescd m’, are listed in Table IV. - - ‘- “-
By (29) the equipotential lines. on a’~’c’ are its intersections with the hyperbolic cylinder

family xy = – P/m’Jl, = const, The orthogomds to P cgnst. at the surface a’b’c’ are the stream-
lines there. These by (31) are parallel to x where x = O; parallel to y where y= O; normal to
z where z= O. The same obviously holds for spheroids and other ellipsoidal forms.

In the Zy plane the flow has the polar streamlines (18); also it has there -.

q?– ;rn’$ha’b’ sin 2q #=-~’&u’b’ Cos 2V--------------(29II

whence the streamlines in that plane are plotted. The form of (29,) is like those of (15) and
(23,), for the elliptic cylinder and prolate spheroid, entailing similar expressions for the veIocity
and pressure in the plane-ffow field z = Q.

For the general flow the velocity componen~ at %c’ are by i2’Jj

and those due to the superposed velocity —Q.R = go, are

u“=n,y D“=-Q&c Wff=o----.---------------- (3~)

whence the resultant velocity and pressure may be derived for all points of the flow field about
the ellipsoid fixed in the steady stream – QJ?. In forming the z, y, z derivatives of m’. one
may use the relations (14) and (72).

Everywhere in the planes x= O, y= O, the resndtant velocities are. respectivel~, by (31)
and (32),

q=u=(l–~’JM q= O=–(l+m’,)Q&-_---------, --__ -(33)

while in the pIane z= O, q can he found as indicated fqr an eII@ic cylinder. (33) apply also
to the elliptic cyhder and prolate spheroid previously treated, and to all other forms of the
ellipsoid fixed in the flow – Q..

(B) BODIESIN COMBINEDTRANSLATIONAND ROTATION

LM08T GENERAL–MOTION.~The most .generfd moliou of any body through a fluid may
have the components U, 1’, W along, and %, ~b, Q. about, three a.xes,say a, v, C. ‘1’hcentailed
resultant particle velocity q’ at any flow point is found by compounding there the individual
velocities severally due to U, V, W, %, ~bj %,. md Cmnputable for an efipsoid by form~llasin
Reference 2 and the foregoing text.

YAWLNGl?LIGHiG-kI airship study the flow velocity q’ caused by a prolate spheroid in
steady circular flight is specia!ly interesting. .Let the spheroid’s center describe about 0, ● “” ‘“”
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Figure 9, a circle of raditis na, with path speed naQ. TkIen if a is the constant yaw angle of
attack, the component centroid velocities aIong a, b, and the steady angdar speed about c are, .-

respectively,

E=naQ ccis a T=tiCl Sin a s2c=fL. ---_ -----_____ -_(34) -.. .—

If, now, velocities the reverse of (34) are imposed on the body and fluid, g.= O, and the
surface veIocity q on the fixed spheroid has in Iongitude and Ia titude the respective components

!(q=(l+~a) us~ 6’– (l+klI)TCOS 8 COSCd-[?)’l’cCOS(8+/9]+COS (O–#)]Q# (!0S m
}

——

%=(l+kb)vti CLI+(l+?n’c)t2~ (!0S ~ Skl (t!
_---43j’j -.

~vhere positive flows along ds are, respectively, in the directions of increasing q, w, as in Fig-”
ure 3. The terms in U, T, are known formulas for translational flow, e. g., Referen~e 2; the others

..——

are from (27). IIence ga then p is found for any point @, u) on the spheroids If Q=is negli-
—.

gibIe, g= ~ ah q where ~= (1 +Ie)z 7P + (1 +IJIV, and e is the angle betireen the 10CSIand
poIar normaIs, sw proved in Reference 2.

Figure 92portrays, for spectied conditions, theoretical &ks of p/$Q2, Q being the path .
,

speed ~’?? + v of the” spheroid’s ~nter;
—

it also portrays pj~p~ for the model ~ rectilinear

motion, with Q= U. The difference of p/$@ for straight and curved paths, though material,

is less than experiment gives, as shomn by 93. Fuller treatment and data are given in
Reference 3.

-->.

The forces X, ~ and moment h’, for &y zone, may be computed as before; but for the
whole model they are more readily found by the method of Part IV. Zonal Y and ATfor a

-.

hfi form are found in Part HI.
The first of (35) applies alsc to an elliptic cyIinder, with cos u= 1, m’.= (a’– F)/2ab. .—

Fi~ed in a flow – U, – T, – fl.,’ it has the suxface docity

Q=(l+b/a) usind-(l+f@] ‘Tcose —
[ 1

a:;: COS (@+~)+COS (f?-~] !l#----_----__(36) .—. -—-..

For an endless flat plate b= O, cos 0= 7)/a. sin 6 cot ~; and the last term of (36) maybe rewritten
by (21,); thus (36) becomes

-- ---—

q=(u–r’cot ~–a% cos q cot 277)~ @------------------------(hi)

These two values of q with (11) give the pressure dktribution over an elJiptic cylinder or flat
plate revoI-iing about an a-us parallel to its length or fixed in a fluid rot.at&~ about that axis.

.

Thus an endIess plate of width 2a., revoltig with angdar speed fl, path radius na, and
incidence a? as in Figure 101, has by (37) the relative surface ~elocity, viz, slip velocity

fJafl=(n cosa-nsin acotq-cosqcot2q) tic---------_--___ --__(3S) ._. ___

and since sin 28= 1, gOa=Uz+ (~+M)*= a412(nz+2n sin a cos q-i cos*q), (1) gives
..

.-+

p/$pa’Q’=$-f-2n sin a COSV+COS~–n’ (COSff-sins cot q–~ cosq cot 2~)2_-------_(39) -—_

For n =3, ce=30°, Figure 10s delineates the distribution of sIip veIocity gfafl on both sides of .-—

the plate; 10S that of the pressure p/~ pa2Qzon its two faces. This pressure integrated over

the plate’s double surface g$res 17= O,.as may be shown. The dashed line in Figure 108is the
pressure-difference graph whose integraI for q= O to T is aI,sozero. The resultant foroes X, Y
and moment hr for such a plate are found in Part IS’ by a method simpler than surface inte- .- .-
gration”of the pressure. . -----

~Hereagainq is the slip speedofthe &w at en~ point ofthe bOdy’8smfece,and dependsonly on the relatke nmtionofbc@ and fluid. -.—
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FLOW INSIDE EmwsoxD.-At any point inside an ellipsoid with speeds U,
n,, along and about a, b, c, HIed with inviscid liquid otherwise stilI,

.

- Lo

-.8

(2)

\

1 I I 1 I I I I I 1 1 1 I
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2 4 ft:~ ,10 12

I

FIWW?9.—Prolatespheroidin steadyYawhwfll@t. (1)Deh
vehcity oonditiona;(2) delfnwtea th~timl mSSUB ~-
h’ibutfon;(8)a~t.d ~ Mtributkm for Q-4IIfeat
w “wmnd. ~ (2) ~d ~), fnf] Ilnes indicate rectikwar,
daakf Uneeourvilfnearmotion

whose coefficients
velocity q me

v,w, i-l=,$lb,

.---------(40)

v-.

x
T I I I I

-f.o -.8 -.6 .4 -2
Feef

(4) - -.06N
--.08:

.4

t -.14
-.—.-:. , . .— +.06

------ .~-~~ -- - ~

\.

- -.o}~

--.02 R
--.03$

\

(5)

-L. “%.\ -.

~ -.08
x

(61

------
-------

/

/0 --.09> .
/0 ,L .-” . --.lo~/-

+--.1/
Fmurm 9 (C021tiO~-PiU oandlt[om (1), (4) dalineWs PWSSJUWlomrfper unit

length; (5) W mnel fcuc&(6) the zonelmoment. In (4) the fufl end dotted lines
givetkmtlrd tines fromeqaet!one(m), (bd; the daahedline,erpmrlmanteldues
fromrefamnca8. (LIJfeobtufnedby Plenfmetrlng(4);(0 by Plenbnetrtrw(5)

.
are constant for the whole interior. Hence the components of the particle

●
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and Iike values for o, w found by permuting the symboIs. If the fluid were soIidMed any
particle would have

u= Ui-C?~z-$2cy, etc., etc .-.-_ -_--: ---___ -_---------(42)

Thus when au ellipsoid full of inviscid still fluid is given any pure tradation its content moves
as a solid; but when given pure rotation each partioIe moves with 1sssspeed thaa if the fluid
were solidified, since the fractions in (41) are Iess than unity.

For velocities U, V, Q, of the eHipscid

q,o

\

\,
,,

~=&+ vy+agQa--_.----- _--_--.------------(43)

r//I
-----.-

FtGC’EE10.–Endlassflat phte KIvolvLogabout * paralkl to its _ in in51te Invkid fluid. (1) Definesmndkio~ (~ debeak

rde.th) W.kdtj’#/uQ oftkdd; (S) ~e P+ P Ki W, ti WWUWJdiEerence A1+@d ~ 011tWOke9 of@lt8

for which w=?@/&=O. For this plane flow (4) with (43) gives -.
\

*= Uy– vx–jQ.:~(x’–&)_____ --_-_________ -__(44)44)

whence the streamlines may be plotted. In particukr if the model has simple rotation &

$–$= –2:::::#/fi,=wtit. ------__ .-_-_ --_-–_ --_-(45)

and the interior streamlines are hyperbolas, as in Figure 5.
Adding (2) to #in (45) gives the steady flow

@=&, (a~+b%)----------------____-__------(46)

hence the streandines Iie on the elliptic cyIinders

a*@+ bW=(a*+b*)/QC*= comt. ------- ___- __-------- _-(47)
1CM39i~%
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By (46) q= 2Qc(a4@+ iY&)~/(a2+ b~-;which put h“ (1) gives at (z, y), since q~= – $23,

-~=#&2%y’n--------------------------@-“-
where pn = pg02/2. Here pm..is .@e Cgqtrifug@ pressure due to. the fluid’s. peripheral velocity
~0, and P is the pressure ch~w dve M%.- % ~ being t~ wlati~reVelOCitYOffluid.and.container” ._ _ . ~
In a like balloon hull q would quickly damp out, leaving ordy p n as the dynamic pressure: ~~t
the ends of a, b, c, respectively, (48) gives

Pn–P _ 4~4 k’. ..... ~
P. – (a’+ ?4’)2’(u2+b’)’ “

For large afi the first is negligible, the second approaches 4, giving p = : 3P.= – 1.5PQ?~ ?! ‘_
the temporary dynamic pressure drop inside the hull at the end of 7J. Experinienhd proof
would be interesting.

POTENTIAL COEFFICIENTS.-k dipsoid of semiaxes a, b, c along z, y, z, when moving
through an infinite inviacid Iiquid, otherwise still, with velocities U, 7, W, Q=, 0“~,Q,”along and
about the instantaneous lines of a, b, c, begets the known velocity potential

the six potential coefficients m being constant over any outer confocal ellipsoid a’b’c’. Their
values for abc are given in Tables 111, IV. Alternatively (49) can be written for this surface

the Is being the more familiar inertia coefficients detid and tabulated in Part TT. Of the sis
potential coefficients in (50) the fit three are the same as the inertia coefficients Pa, lib, k.;
the last three are greater except when c/%or a/c or b/a is zero. Thus, if b/a= O the last term of
(50) is – k’&~, which is the potential on the outer surface of an eUipticcylinder (a = = ) rotating
about c. Everywhere inside of it the potential is f@y, as (40) shows.

For the flow (4o) textbooks give the inertia coetlic.ients

k., kb, k,=l
6’+ 2 ‘“

(–)
c+-a2 “

‘“= b’+d ()
~fb= —~+aa , etc---.. -.- —--_---. (5l).

which are the squares of the potential coefficients. @e notes too that the ratios of like terms
in (4o), (5o) equal the ratios of Iike potential coefficients and like inertia coef%cients, which

-.

latter in turn are known to equal the ratios of like kinetic. energies of the whole outer and inner
fltiids,if the inner moves as a solid.

RELATIVE”VELOCITY AND KINETIC PrmssuRE.-When a body moves steadily through a
perfect fluid, otherwise stil.1,the absolute flow velocity it begets at any point (x, y, z), being
unsteady, is not a measure of the pressurechange there. The relative-velocity is such a measure.
To find it “we supel~oied on the moving body and its flow field an equal counter veloci~y, thus
reducing the body to rest-md making the flow about it steady. The same result would follow
from geometrically adding to said absolute flow velocity_the reve~ed velocity of (x, y, z) assumed

).

fixed to the body. In particular this process gives for any point of the body’s surface the wash
velocity, or slip sped, which with Bernoulli’s principle determines the entailed change of surface
pressure. Ccmvers61j, if the pressure change at a point is known or measured, it determines
the relative velocity there. In hydrodynamic books the above reversal is used commonly
enough for bodies im translation. l’n this text .it k-employed as well for rotation; also for
combined translation and rotation. However general ita steady motion, the body is steadily
accompanied by a flaw pattern whose every point, bed relatively to the body, has constant
reiative velocity and constant maggtude of instantaneous absolute velocity and pressure.
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PARTm

ZONAL FORCES ON HULL FORMS ~ ;

PRESSURE LoADING.—For a proIate spheroid & with speeds 77, 17, $2., Figure 9 I, or fixed
in a stream – U, —F’, – Q, (35) gims d (cc,y, z) on a~c the relative velocity

. ..—

A, B, O being constant for any latitude circle. k forming this equation one finds —

B=2(l+k=) usin 19{(l+k,)vcos O+[m’c Cos (8+ f9)+cos (e–~)]m,},

etc., for A, 0. In the body’s absence said stream has, at said point (x, y, z),

@= (– u+@c)*+ (– V–MC)-A1–. BI Cosu+ (71Cos?a?,

where w alone varies on the latitude circIe. Its radius being y~= ZO,makes g= YOcos u,

BI = 2 UZJL,

etc., for Al, O1. Putting q, qOin (1) &es the surface pressure

-.

p/.5p =q09–@=(A1–A)+ (B– BJ COSW+ (~1–~ COSa OJ. “

J

.% s*By (101) the loading per unit length of z is, since o Cosol=o= COS3a,

.

J
P/.5P = – ~ :p COSu du = –(B–B,)%~co# wdw=-@-B,)%.--------(a)

A, A,, 0, 0, vanishing on integr&tion of p. Thus, finally,

P/.5@2= -r(B-B,}%/Q'-- .------- _--_ -_-----------(a,)

P having the direction of the cross-hull component of p at a= O.
One notes that &(= sinsco) contributes nothing to B or the integnd in (a); viz, the loading

P is unaffected by gd, and depends soIely on q., the meridian component of the wash velocity.
AIsoforfl=O and r, B–B, =O=P.

In Figure 91 the full line-depicts (a,) for the spheroid shown in 91, circling steadily at 40
feet per second. The theoretical dots closely agreeing with it are from Jones, Reference 3, as is
also the experimental graph. Beside them is a second theoretical graph plotted from Doctor
31LLuk’sapproximate formula derived in Reference 8 and given in the next paragraph. But
that Professor Jones omitted some minor terms in his value of p, his theoretical P/.5p@ should
exacdy equal (aI). Ih formula, deri~ed by use of Kelvin’s p,/P ==@ cf/2, can best be studied
in the detaiIed treatment of Reference 3.

In Reference 8 Professor .k.nes derives Jlunk’s airship hti formuIa

.—

.. .-

—-.

—-—
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S being the area of a crosS-SeCtiOn; R the radius of the path of the ship’s center. This was
assumed valid for a quite longish solid of revolution; for a short one it was hypothetically
changed to

z=(kb_k=) ti2ag+2#&(d)-.---_ ..--------------(b)
.6pQt

t

Applying this h a prolate spheroid we derive the working formula—.

!

%%

-–h-w+N ---------------------------- (b,)

where the constants for a fixed angle of attack are z

.L=2(kb-ka]$ br Sk 2~,
V 2T

M=3k’,$ “ ~ Cosa,
.~rcosa

N=it’# ~ .

Plotting (bl) for the conditions in 91 gives the dotted curve in 94. It shows Iarge values
of P/.6PQ2 for the ends of the spheroidj where (aJ giv?s ZWO. TO that ~tent it f~s~ though
with little consequent error in the zonal force and moment at the hull extremities. It has the
merit of being convenient and applicable to any round hull whose equation may be unknown
or difficult ti. use.

,
-.

ZONAL FORCE.-b end segment of the prolate spheroid, say beyond the section x= z1,
bears the resultant cross pressure

J
Y= am-c --------: -___-----_-___-----_--_-(c)

a

which with the resisting shear at Z1must balance the cross-hull acceleration force on the seg-
ment in yawing flight. For the wholq_model (bl) ~~h (c) gives Y= O, which is not strictly
true for curvilinear motion; but (al) with (c) givw-the correct theoretical value of Y, and

...

agrees with (67).
In Figure 9Sgraphs of ?/.5pQ’, for the values (a,) and (b*) of P, are shown beside those

derived from Jones’.experimental pressure curve. Since Y is proportional ta the area of a -”
segment of the graph of P, it can be found by planimetering the segment or by integrating ~ti..

ZONALh!fomwr.-The loading P exerts on any end se~ment, say of length a-z, the
moment about its base diameter”z

sN.= ;Ydz

which can be found by planimetering -the graph of Y. Figure 96delineates N, so derived from
the thee graphs of Y. They show the moment on the right hand sefient varying in”length
from O to+a; also on the left segment of length frorg O to 2a. ” The resisting moment of the
cross section must balance ATZand the acceleration momentof the segment.

CORRECTIONFACTORS.-NO attempt is here made to deduce theoretically a correction
factor to reconcile the computed and measured p. In Reference 3 Jones shows that the theor-
etical and experimental graphs of F/.5pQ* have, for any given latitude Z1> a/2, the same
difference of ordinate whatever the .incideuce 0<a<20°. Tlmg. the o!dka~ difference. found
for the zero-incidence graphs, when applied to the theoretical graph for any tied 0<a<20°,
determines the experimental one with good accuracy. Such estabIiahed agreement in loading
favorably affects, in turn, the graphs of Y, lV, the transverse force and moment on any end
segment of the spheroid.
—

z; rd dye
—

iFromtbemerldlmcurve~+~ =1, ~--~ ~’~, fl-ti~t; henca&2.j’0 ‘+--% : r, whfobput In (b) M-to (bI).
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART IV

RESULTANT FORCE AND MOMENT

BODY IN FREE SPACE.—Let a homogeneous dipsoid of semiams a, b, c move frdy with
component velocities u, u, w, p, ~ r 1 respectively along and about instantaneous fixed space
axes z, y, z coinciding at the instant with a, b, c. Then the Iinear and angular momenta referred
to x, y, 2 are

mlu mlv mlw Alp B,q a,r.------------.-----(52)
.

ml being the body’s mass, & ill, O1its moments of inertia about a, b, c. If, now, forces Xl,
~1, ZI and moments & Ml, fVl are applied to the body aIong and about z, y, z, they cause in
the vectors (52) the weMno- ohange rates

ml(ti-m+gw)=xl A&– (B,– CJqr=Lq
nzl(i-pw+l’u) = Y,

1“
I&Q–(O1–A1)rp=M, --------------(53)

ml(ti– qu +pv) = 21 6+ (A,–B,)pg= N,

which apply to any homogeneous solid sycnrnetrical about the pknes ab, 6c, ca.
For motion in the ab plane; viz, for w, p, g= O; (53) give

Xl=ml(ti-m) Y,=7n,(iJ+m) Nl=cl*:-----(54)------(54)

and for uniform revoMon about am axis parallel to z, as in Figure 11, viz, for u, &,;= O, (54)
beoome

Xr = – ?n~?v Y, =na,m N,=o-------__---_ --__ -_---(55)

where now Xl, Y1 me merely components of the centripefd force rn1r~u2+ z?, whose slope is

YI/Xl = –ti/v. AIso if Q = ~u’+ti is the path veloci~ of the body’s centroid, h its path radius;
r= Q/h is the angdar velocity of h aud of veotir mlQ.

REACTIONS OF FLUID.-If extezual forces impel the ellipsoid from rest in a quiescent fric-
tionIess in.finite liquid, with said velocities u, n, u+ p, q, r, they beget in the fluid the corresponding
Iinem and angular momenta

kamu kbmv k.mw k’gAp k’aq k’,&--- .---____ -_(56)

where m is the mass of the displaced fluid, and A, 1?, O its moments of inertia about a, b, c.
One calls kam, kbm, k.m the “apparent additional masses”; k’=A, k’Jl, k’=O the “apparent

additional momenta of inertia,” of the body for its axiaI directions; beeause the fluid’s resistance
to its linear and angular acceleration gives the appearance of such added inertia in the body.
The six k’s are cded “inertia coefficients,” and are shape oonstants. Values of them are
given in Tables III, VT, VIII for various simple quadrics.

The component flow momenta (56), like (52), are veotors along the instantaneous directions
of a, b, c; viz, aIong z, y, z; hence their time rr/tesof change must equal the forces and moments
which the body exerts on the fluid; viz,

X=m(k=u-kbm+k~w) L= Z’aAp– @’J? -k’= O)qr– @b–kC)rnmo
Y= m(kbi –ii,pw + keru) iU=k’@j– ~GO–k’A)rp– (1,-k.)mwu

/

_-__(57]
Z=m(k@–k~+kbpv) iV=k’@– (iP&-k’&)pg– (k.-kb)muv

1 TtEs4 m= mw.ntngad G 8, w, p,f,rm asslgmd for commtfon’s sakeand fw wnvenhme.
429
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all fitten from (53) on replacing its momenta by those of (56), and adding vector-shift terms.
Thus the vectol.k.naw shifts with speed v entailing the change rate 7c~mw.vof angular momentum
about x, while ~ bmv shifts with speed w entding the Opposik rate-~ @?V.w. Their sum is
(k,– ?ib)m~. Permuting these. gives ‘for the y; z axes (h-k, )mtw, (kb– ka)nzuv. When the
k’s are equal the vector-shift terms vanish, as for said free body, or for a sphere, cube, etc., in a
fluid. The fluid reactions are (57) reversed. (57) apply also to fluid inside the trisymmetrical
surface. .-

If the angle of attack is a= tan-iv/u, we may \ti”& in (53), (57)
—

r=Q/7L tL=Q COSa v= Qsina uv=~Q2 Sill 2a.. --_-- _---. -[58)

\h
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FIGUREII.—Momenta imdforoesforfreabodyin tmiformO* motion. Centrkwtd form RI- ?nQr-
?Wh. 1288S1OIM-z&@r Mti 8- SLFWJaboufO

Of special aeronautic interest
for which w, p, q =0~ .@V~g

x=nl(k=u-k*rv)

Thus for uniform circular flight

me (57) for plane motion, such as in ya~fig airs~p flight.

..L
Y.= m(k,~ + k=ru)” iV=k’JW+ (kb-kJmuv-- :--_:__(59l -

x= ‘kbm~ Y=k.mru N=@ b–k.)mw--- .------____ .-_(6O)

which are the ana.loguesof (55) for the free body. Or.in notation (58)

x= -? pQ~ sin a Y.=k+PQ2(30SCT
PQ2 .N=(kb–k=)r~sm ~a-----.----(6l)

~ being the volume of the model.
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As shown in Figure 12 (60) give the resnltant force and slope .,. .—

R2= mr~k.%g + k~i$ Y/X=–~cot a=–cot9---- .---_ ..__ -(62)

also R and A’at the origin are equivalent tm a parallel force R through the path center O, aIong
a line (caIIed the central axis of the force system) whose arm and intercepts are --

l= A’[R=h sin (~–a) x=lsecfl y=lcosec d_-__ -_-___ -__(63) ..—..t.—
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FIGUEElZ—Momentssnd forcesfw symmewimfbody in Worm cfrmler motion through frfct[onfesLnffnfte
.—

llqnf~otlumissnt rest. W%olehydr@msmIc force,R=rnr 4W W@ 1#, fus SIOW –L ufkis. Yaw

moment N= (kJ-k.) mum=(k~-h) T ‘$ sfn 2 a, r beingvolume

For steady motion (60) show that the body sustains no force in pure trandation (r= O);
no force nor moment in pure rotation (u, w= O); no moment in revolution about a point on
x or y; -riz, for u=.0, or 0=0. For given u, o the moment is the same for revolution as for pure
trrdat ion. The forces resuIt from combined transition and rotation; the moment from
translation oblique to the axes a, b, irrespective of rotational speed.

COMBINATIONOF &PLIED FORCES.—TO find the whole applied force constrain@ a body
to uniform circular motion in a perfect fluid (55), (60) may be added, or graphs l&e those of
Figures II, 12, may be superposed. For an airship having ml = m, (55}, (60) give

.-
-.

F= (1 +k=)mur ~=(kb–k=)muo--- __(64)-(64)

j Writing R.rQ.m ~k.i .xA+-k# sfnr,zwe DMF calf It the cmtrfpetd forced the ap~nt msss mJkJ C&d+# Sknla rbr tfle”~y dfrtc-
tfon of Q.

--
*

.—. —“% —“
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where ~=.Xl + X, etc. Figure 13, compounded of Figures 11, 12, shows that a submerged
plane-force ~odel, revolving uniformly about i@ path center, may have as sole constraint a
single force R through that center, and outside itself; that is attached to an extension o: the
model. Such conditions appear commonly in vector &.grams of aircraft. The line of ~, so
defined, is the central wcisof the force system.

HYDEOKINETICALLY SYMMETRIC FoFtlm.-Equatibti (56), (57), for trisymmetrical shapes,
apply also to others having hydrokin.etic symmetry. Examples of these are: All surfaces of
revolution, axialIy symmetric surfaces wliose cross sections are regular polygons; torpedo forms
symmetrically finned, etc. All these figures, as has been known many decades: have three

~

\
\
\
\
\
\
\
\
\
\
\

-— ----- ----
\
\
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\
\
\
\
\
\
\

---------—
I
I
I
I
I

I
I

I

I
I

- Jtb mv.r - mu.r 0
/“”

mu.r

/

k= mu.r /’
/

FIGUREIa.-oompodtlon offormson sgmmetrlcalbody fn unffmmohukr motion through frktlonlessInflnIteIIquld
otherwiseat rti. R&nlbmt of cantrlpotal and hydrodyzrmnfoform, ~=-m r ~(l+L)~ u+(l+k~)~ #, has slow
_l~tl. F-18 k II ad ~--dti

I+kb 8

orthogonal axes.with origin at the body’s impulse cen@r,4 such that if the body, resting in a
quiet sea of perfect fluid, is impelled along or about either axis it begets in the fluid a linear
or angular momentum expressible by a vector along that axis.

EXAMPLES.—We may apply (60)’ to some simple cases interesting to the aeronautical.
engineer.

(1) For an endless elliptic cylinder in uniform yawing flight, as in Figure 12, m= rpab per
unit length, and by comparison with Table VIII ka= b/a, kb= afi; hence by (60)

: seeRefeJw@7.
~L e., the point offnterswtlonofkm U, km V,Mnn it may be found6sInthelastparagraphof Part V.
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x= –W-&pm Y= Tvplw
PQZN=u(al–b2)p.uu= ~(a2–bp)~ sin Za.--.--- (65)

‘I’he resultantforce rpr~af? + b%z has the aIope – i%/a20 = – b2/a2.cot a; the centrrd axis is
through the path center; X is the same as for a round cylinder of radius a; Y the same as for
one of radius 6. For a good elIiptic aircraft strut a/i3=3; hence X/Y= – !lvfu= – 9 ‘tan a;
~=~T~,w,=~=~, @y’ s~ ~a

“~” By (65) N is the same for all confocsl elliptic cylinders, since

(&—1?is so.
If a= b, as for. a round strut, iY= O, R= a-a’prQ’ and coincides with the body’s preciously

found centripetal force to which it bears the ratio m/ml.
If b = O, sa for a flat plate, (65) become

X= – xazprv Y= o PQ2N=ra2pun=ra2T sin 2a. ___- _-__ -_-(66)5

The equimdent restitant force WIJptw, with slope Y/X= – O, runs through the path center
para.M to z. If T= O, the plate has pure tramdation, with forces X, Y= O, and moment
lJ=mZ2PUq a well known result. X in (66), being the same es in
(65), is independent of the stit thickness h

(2) For a prolate spheroid, of semiaxes a, b, 6, in uniform o
ymvin.g fight, m =4/3.qKJb2, and k., it~ me as given in Table 111.
Thus for afi =4, ka, k,= O.082, 0.860; hence by (60)

X= – 3.6a62prv Y=o.3434ab~pru N= 3.26WPWV- (67) -------- -

(3) For an elliptic disk of semiaxm a, b, c, moving as in Fig-
V

ure 14, Table VIII gives Icc?n= $@Z/~ hence by (57) the forces

and moment me
[

a

Y = –iicmpw = –~;.T&’.pw Z=o z

FIQUEE14—Thin ~I)tin W@ mOV@ IIe.r-

L=k=?n.mo=g;rpb?m- ------ (68) , audtokspkneo( ~-a
Wfect fluld

--,-
-A—.

—

-.. —

,. .—

the other pertinent terms in (57) vanishing, as appears on numerical substitution. Here

1?= E(6, ~), sin%= (a’– b2)/a2;also L=~&@$ sin 2a, ~ornpare (68) with (66), tilling b the .

width k I&h.
THEORY VERSUS E=ERIMENT.-III favorable cases the moment formulas of Part IV

--

accord fairly T&H with experiment, as the foLlowing instances show. For lack of availabIe data
the force formulas for curvilinear motion are not compared with experiment.

(1) By (65) an endless diptic strut with a= 1/3 foot, b= 1/12 foot, c= 5 feet, held at a
degrees incidence in a uniform stream of standard air at 40 miIes an hour, for which pQ2/2=
4.093 pounda per square foot, sustains the yawing moment per foot length

lV=~(a’-b’). p#.sin 2a=l.3392 sin 2a lb. ft-_-_-______-_ -_____(69)

This compares with the values found in the ~avy 8 by 8 foot tuunel, as shomm in Table IX
faired from Figure 15. The agreement is approximate for small angles of attack. The model
was of varnished mahogany, and during test was held with its long axis c leveI across stream,
and with two closely adjacent sheet metal end pIates, 2 feei square, to give the effect of plane
flow.

IEqu8tlone(@d)vferepubUahedh Refermce5esthemalt ofaSWW~ todetertio W CnIdKorceeandmomentonamvoIvingplate
Snthe~nt t8xttiey Collowesmdlarksfrommoregenerelfam~.

—



434 REPORT NATIONAL ADVISORYCOMMI’l?ll?3EFOR AERONAUTICS

@) By (66) an eiidless thin flat plate of width 2a= 5/12 feet, similar~y held in the same
air stream, has per unit length the moment

AT=ra2p~ sin 2a=0.5581 sin 2alb. ft.- .__. ---. __.---_ ----(7O)

This is compared in Table X and Figuie 16 “with the values found in the Navy 8 by 8 foot
tunnel. The flat.plate was of polished sheet aluminum 3/32 inch thick, with half round edges --
front and rear.

Again for an endless flat steel plate 5.95 inches wide by 0.178 inch thick at the center, with
its front face flat and back face V-tapered to sharp edges, Fage and Johansen, ReIerence 6,

-. . —.

—

.-

FIOURE15.—Tbeoret1mIand experJmenkl moment FmuRE16.+heorecticel and ew?rhnentrd moment about long exis of endks
abut longaxisof endfesseflipticoylinder. Width .rectangularplate. Width 6 inch% afr SC.M40milesw hour. Cosre310n
8 inches,thIclmess2 inches,ah stead 40milesw feotarK-o.wo
hour. CcuraxionfactorK=O.’SI2 .

found, at 50 feet per second and 5.85° angle of attack, ~= 0,125 pound foot as the moment
per foot run about the long a.x& computed from the measured pressure over the median section.

-..

By (66), a thin flat plate would have

. PQ2N=ra2. T . SiR2a=0.1931 x2.9725 x0.2028 =0.116 lb. ft. .

which is 7 per cent less than 0.125 foun~.~ith the~ slightly cambered plate.
(3) An elliptic disk 3/32 inch thick with a, b= 15, 2.5 inches, when held as a wing in the

Navy 40-mile-an-hour stream, had the moment--L vensti angle of attack a shown-in Figure 17
and Table XL_ Ior this case

sin% = (d —b2)/az* 875/900, e = 80”=%4’, “ E=l.03758.
Also in (68) a= 5/4 feet, b= 5/24 feet, ~ =4.093; hence

4a PQ2
‘=szE”Tb2.~ ● Sk 2a=0.8963s~2a lb. ft. -__------ _.------- (7l) — .....

.-
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which gives the theoretical values in Figure 17 S@ Table XI. The agreement is fair
at small incidence. The disk as tested was of sheet ahminum cut square at the

.- -—

edges without any rounding or sharpening.
.-

(4) Forawooden prohdespheroid .20

/“””

f ,-—

24 inches long by 6 inches thick, It
./8

carried as in Figure 12 round a circle I

of radius h= 27.96 feet to the model’s
center, Jones, Reference 3, found at . :; ~;~~’hewe”o’ ‘“ ‘“ ;-:
40 feet per second the values of IV t
Iisted in Table XII. For this case ~ -. [2

[ \
Table III gives la – k== 0.778, and : -.10 ~~imtmfo[

\-

(61) giVeS - ~~r’

PQ2h’= (iib-k.)T. F. Sin2Ct=0.388ti2CC.
g -m /

. 2
.0

These values appear from Table XII
not to accord closely with the experi-
mental ones.

CORRECTION FAcroris.-Ffgures
15, 16, 17 portray experimental
moments, at small angles, as accu-
rately equal to the t.heoreticaItimes
an eDIpiI’iCd COITeCtiOII faC~O”k K.

Thus amended (61) give for the
experimented moment

PQ2
~,=Kff=K(~b-~=)T “ ~ “ ti h.

For the given elliptical cyI.inder
K= O.912 with – 8°<ct<60; for
the erdess plate K= 0.860 with
– 6°<a<60; for the elliptic disk
K= O.887with – 5°<cc<40. In such
cases one should espect to find the
actufd air pressure nearly equal to

1 1 i I 1 h i f ) 1 I I 1
-8” -6--4” -2” 2“ 4= 6.” 8“ 10” f2° !4° 1~ /8” 20=

‘Angie of aftq=k, d

f

k

J’
f

:
i’

--.20

,--:_.

.. ._
.:. .

..-.-.. ..
.L L.

, y~=

.,,

>..

.-—

.

.-

.— “-. “-... ..~
. . .

..-,
.- —

.. *-

..-”

---...-,... . .. .

—.-
the theor&icaI over tie rnodeI’s ??lGCMlT.–TheoreWw =w=imntafm-nt w fow ask ofWWc ti~.

Mm_wfcfti5fuchw,8frw13d Mmfk8@hti. Comdlon&taforward part, but so deficient along ~a%
the rear upper surface as to cause a
defect of resultant moment. NTOeffort is made here to esttiate it theoretically, nor to de-
termine it empirically for a wide range of conditions.

The measurements shown in Table X, for the flat plate, were repeated at 50 and 60 miks
.-- _____

...-..——
an hour without perceptible smde efFect. .-
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PART V

POTENTIALCOEFFICIENTS,INERTIACOEFFICIENTS

GREBN’S lNTEG~fi.-The foregoing text employs Green’s well-known integrrds, which
for the ellipsoid abc maybe symbolized thus:

where a’= +“, V = ~~ eti., are semiaxes of the confocal ellipsoid a’Vc’. The integrals
have the following values, Reference 4:

a= A (V – c2)[F(e, i) —“E(e,$0)] ‘-’ \

[ 1‘-A(d-a2) $=$F(*’ ‘)+s”$ ‘(6’ ‘)
——

8---------------(73)’

[

.—
~ =A (a*– b2) da2– d% –-E(6, @)

.1

where

and the elliptic integrals are

~(o, p)= Y(I – Si1126sin2w)-~dP E(e, ~)= y(l –sin2e sin2p)~d~-. -------(75)

Numerical values of F(8, q), E(o, p), a, & ? are given b T~bl~ 1, 11 for ~= O and various “
ratios a/b, b/c; viz, for various shapes of the ellipsoid abc. For w= d2 one writes F(O)W)=~~
E(o, p)= E, by convention.

POTENTIAL C!oEFtiCIENT5-FOr motion (49) the ellipsoid abc has the potential coefficients
known from textbooks.

a(y–11) > V-C2?n’c=E2G– (70–j130~
~==eq “ I

where G= ~q2

b“ H(W–7} ‘““

I

22

‘b=~o
“b=zz- (%_~~ where H= ~i~:2 -------------- (76)

‘r I(P– a) &– 52

.—.

“ 2–70 “0=21 -@o-q i)” where 1= ~2+ ~z

m=, m b, m ~ being for..translation along a, b, c and m’=, m’ b, mrc for rotation about them, and

m, 6., 70 being (73) for X=0; viz, for ~’, ~~,c’ =aj ~, c. Surface values of (76), viz, for a, & 7=

~, I%,~0 are given ~ TBWW U, ~. For fl~d ~@e @ eM@d the PO@nti~ COefiGi~@ are
as in (4o) and given numerically in Table V.

INERTIA@mmcmNm.-tim (76) are derived the conventional linear and angular inertia
coefficients

k., kh, k~=m.j rnb, mo Z?’a,k’b, iFG==(7m’a) ~mfti, Im’,-------_--_--(77)

for the ellipsoid moving through or containing liqtid, as in (40), (49). surface vahes are
given in Tables III, VI, WI.

----

1(~ ~thfy tie ~0~ relatfona+Bfi-2Wa’b’c’, w aPpemeOnadflu
436
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IJIWTING CONDITIONS.-ti some limiting cases, as for c = O, or a = b, eti., (73) may become
indeterminate and require evaluation, as in Reference 4. k such cases the formulas in Table
VIII may be used. For c= O, entailing zero mass and ir&ite k,, k’=, k’b, ofie may use in (57)

...—

the vcdues of kern, k’=A, k’Jl given .at the bottom of Table VIII.
-.

PHYSICALkbnrrm OF THE ~ommrclEms.-The tabulated potential coeflicienta, put in
(40) or (49), serve to tlnd the numerical value of the potential p, or impulse – pw per tit area, ●“
at any point (x, y, z) of an ellipsoid surface.a. Megration of pp over any surface, as exphiined
for p in Part I, givea the component linear and anguIar zonaI impdses. So, too, integration of

..—

– PwJ2, where q, is the norrd surface velocity at (x, y, 2), gives the kinetic energy imparted
...-

to the ffuid; and integration of the impukive prtsure –@@ gives the impulsive zomd
forces and moments. One tide p&@t for (40), (49) ,by using with them the specfied density

. ...——

p, accelerations ~, ~: ~, ~=, f&, & “ind tabdated potentifd coefficients for the given semiaxea
a, b, c.

Thus putting – P@C,– PP’. for p in (9), (1OJ, and integrating over the whole ellipsoid
surface, easily gives the fluid’s linear and angular momenta .n -

kc.m V k’,.~c__--. ----.-_______ -__(78)_-__(78)

where m W, @ are respectively the Iinear and angular momenta of the displaced fluid moving
—

as a did with velocities W, fle. The like surface integration of – ~.q~2 givea, as is well known,

iic.m~/2 k’c.~J2-_--___i-___ --________ (79) _(79)

where m TF/2, CfFJ2 are the kinetic energies of the displaced fluid so moving. Each inertia
coefficient therefore is a ratio of the body’s apparent inertia, due to the field fluid, to the Eke

...—-
.-

inertia of the displaced fluid moving as a solid.
By (49) the potentiaI coefliciente due to velocities W, Q. are

The first is the ratio of the outer and inner surface potentials due to W at any point z on the
ellipsoid abc; the second is the ratio of the potentials due to tlc at (z, y), respectively on the
outer surface of that ellipsoid and inside the cyIinder of semkws ~, b, c.

One notes that the momenta (78) times haIf the TwIocjtiesgiye (79); also that the time
derivatives of (78) we the force and moment Z, h’=k.m T, k’@l., as in (57) for the simple
z-wise motions, W, Q.

For any mid surface, say of torpedo form, moving as in Figure 12, the ratio – k’c~~bm F
is the distance from the arb~trary origin 01 to the impulse center 021or center of virtual mass..
This may be takeri as origin, and if the body’s center of mass also ia there Figurea 11, 12 can
sWI be superposed ?s in Figure 13. In the same way are related the acceleration force and
moment kbm~, k’ .@c, thus ilhst-rating the doctrine that the motion of a hydrokinetically sym-
metric form in a boundless perfect fluid, without circulation, obeys the ordinary dynamic
equations for a rigid body.

—

--- -“
—-.-——

,:-

●
✍✍

.-

.- ..—
..-—
--—-

AERODYNAMICU LABORATORY,
.-

BUREAU OF ~ONSTEUOTION~YD REPAIR, U. S. h’AVY;
lVASHINGTON,D. C., December 17, 194’8.

.-. —
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per nnu=ellat (x, % 2).
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CHIEFSYMBOLSUSEDti THE TEXT

GEOMETRICAL
a, b, c------------ ‘Semiaxes of ellipsoid abc.
a’, bf, c’-------- Sem”axesof confooal ellipsoid a’b’c’. .
e, e’- ------------- Eccentricities of ellipse ab and kc confocal a’b’; ae=a’e’=@-~~
n; hl, h2---------- Normal ta ellipw ab; distances from origin to normal and tangent.
1,m, n----------.- D@&ion GosiDegof normal n to any sUrftV30.
8; Sq, So ------------ Length along any line; lengths along meridian and circle of latitude.
x, ~, z------------- Carfasim coordinates; also coordinate axes.
r, B,~------------ Polar coordinates of prolate spheroid abc.
?, 0-------------- Eccentrio angle of ab, inclination to z of norrmd to ab.

KINEMATICAL

u, v, w------------- Component velooititx of fluid parallel to z, y, z exea.
g,, qB-----_-_-_--. Component velocities of fluid parallel to tapgent and normal.
q., q---------_-_- Reaultant velocity of fluid before and after @eturbance.
w U,w------------- Component trrmelation velocities of abc pmdlel to a, b, c ~. .
U, V, ~---------- Component translation velooitks of abc parallel to a, b, c
D.0,?’--------- .”-. Component rotation velocities of abcabout a, b, c------ }

Alternative symbols.
. . . .
Q., ~b, &-------- Component rotation velocities of abc shout.a, b, c----_- J
v,$-------------- Velooity potential, stream function.
ma, mb, me-------- PoteMial coe.ficknts for. abc wit! @wi%l % W.or -Uj I’j. ~.
m’., m’ b, m’=--_--- Potential coefficients for abc with VdQCitiOklp, % r or ~a, f% %.

c!=4m+T~+TP-- R&ultant velocity “ofabc.-
DYNAMICAL

-,. .— :.

.-

—.

.4,, B,, C,--------- Moments of inertii of rigid body about itqqes a, b, c.
A. B. C---------- Momentsof ~ertfa of displ~ed ff~d moving - a SOlid.

Ihaity of fl~id, volume. OPmqde.1or displaced ft~d.
I%%ure .of fluid. moving, pressure on ooming to rest.
Ccuuponent forces applied to free rigid body; resultant force.
Component forces exerted by body Onfl@; m~tant force.
Component momenta about a, b, c applied to rigid body.
Component moments about a, b, c exerted by body on fluid.

. ~rtia coeiTicients for abc.moving parallel to a, b, c in. fluid.

mi, ~J;----_--_-_ Mass of body, rnm of dkdaced fi~d.
p, r--------------

p, p-------------

XI, Yl, 21; Rl---_-
X, Y,z; l?---------
L,, Ml, N1+--___-:
L, M, N ----------
k~,kb,kc-----------
k’=,k’b, k’,--------- Inertia coefficients for abc rotating about a, b, c in fluid.
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TABLE I
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. . -.—.:~______. .. ..
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ELLIPTIC INTEGRALS “F(o,~), E(@,p)l
[Deti inea.(76).PertVI

qc .

1 I 2 3
I
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I

7
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.:+;=
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. -.: }.-

1
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a
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m
I

.

.. 1
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LM41’J

m
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m .
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.--: . ..

-.. :..,.-.
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. m -1- I—.
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:. r-~

-
. . .. . .
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,
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.W97

:&Ii
.m
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L2W35
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L 14237
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L@.5m
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L 31S14
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:=

L X616
LIXH331

,.. =.-.. . --- .
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.-. —.<. .——
, ::.

.. 7..”
.-

1

I— I .

1The integrslsin this table as culledfrom L. Potin’sFornmk et TsMesNumerique.

TABLE II
GREEN’S INTEGRALS w, Be,TO

IDeandinSQ.m. Pd vl- .,
-. .: .-
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..- .

. . ..—
* 1 . :—:=. -..-z

..=- ,.
..-7-

.,—
-.—

*.-----..—
. . ..-.

((./C

b:c

1 2 3 1.4 5“ 6
I

7 I 8
1

9 10
I

.
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u
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o
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.!bwo
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o
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.X3878
. U728

o

: yg
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; H&
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. 07Wl
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o

.:f&-
:. ... . y-.. . . . .. . . . . ..
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;=
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o
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0’

..:-....-—. ..-..==
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I
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b
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a2495i ;
.32235
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L 44829
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L 7?778 LWlm



REPORT NATIONAL ADVISORYCOMMITTEEFOR @RONAUTIOS

TABLE III ““

pOTENTIAL COEFFICBNTS m., rnb, ?n.* FOR ELIJPf101Df3 IN TRANSLATION

(For outer surface of a b c)

[Det@d in W. (76)]

..-. ..— .,. . .. .. . . . . . .... . ., ., . ... .. .“- “,
blc

.

1
~’” ~-. ~. ~ ~- ;“ 1“6-::

.... ;.... . *. , ,0 , ~,

.“
,. .. . .. . .. . . . =. ...

-..

J,* I I I I
.. .. . . . . .-., —...,. .,, J“o

-
F..

t 1.

I ,-. ..[. . .. .“. .

-.,:
...,
*
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:.?4.
%J

r.
m,

:.=.
mi

-.
. .

0:OK&
o. 07al

. Illlx .Iwoo o

. ~..:.

● Thew have the samevaluesM the inertia @3ffioient8k., kb, h.

,,

0.1047
:=

;WJ

I ,0w40
.1429 , .125W

1.

.-,-
-*: ,.
- ,.,-

“:% 4.277
“pg 4670 4.912

4.w ti.ms
:% ;% ;% ;WJ 6.i84

10.m .
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.. -- . ... ... . .
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,.—,.
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TABLE IV

POTENTIAL COEFFICIENTS m’=, m’h m’. FOR ELLIPSOIDS IN ROTATION

[For outer surface of a b c]

Delma Inq. (76)1
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E/c

TABLE V

POTENTIAL COEFFIC~NTS ??#., rn’b, ??t’.FOR EL~pSOIDS IN ROTATION

(For all points inside of a b c)
[Dellnedin BCI.(4o)l

blc .,,.

I 2“ a 4
I

L“:
6 6 7 ““ 8 9 10 m

.
,.

m’s-(r.

0. &tmbo 0.800Q0 O.w.so.9qw” ; b~:’ CM+ “-aOK=I 0.97661 0.W220 Lm

m’~-fi.— .. .

1I same for all

i mm
.47069
Me&

. mm

.WMJ

i%%!

m’,=1. ..-

0
0. mm
. 6s402

mc6c
.6076

.72414
LWWO

I

~: ..”- : I

o
0.11724
. Wa.51

LOCUNJ

o
0.10497 0
LjlNOO l.m ----

—.-

.

—

—- ..
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TABLE VI

INERTIA COEFFICIENTS 1Ha, H5, Fe FOR ELLIPSOIDS IN ROTATION

(For outer surfam of a b c)
pesnedh eq.(77)]

bfc
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1P 13141516171 ‘I””gldm

F.= Qm’.

o
: l133s6
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TABLE VII “–

INERTIA COEFFICIENTS ~’a, k’b, k’. FOR ELLIPSOIDS IN ROTATION.

(Inner surface of a b c)

[DeRnedin eq. U7)l
.-

blc ’””.”

1
~. s

I 4 ““l .6”-1 :;’l. .7 “1 ‘ .1,“_.!.-T:-l:_
“l@=Gm$

●=

o“ o. 8m 0. w o. 77&54 o. 852Q8 o.8s& o. flziea ‘i a 98041
!
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1,.. .. .-
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nme for all vrituesof6/c.
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I I I .1

.-...
1 --1 ‘“l
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0 ““-
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TABLE VIII

VALU13S FOR LIXITING FORbIS

REVOLVIKG IN A FLUID

OF ELLIPSOIDS a>b>c

I INERTIA COEFFICIENTS FOE TRANSLATION AND ROTATION

c-o
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Ckcdar &.L_.....—_ o 0 ~ .=
1$ EW&t@l_i&ll:::::—_—

m
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1
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g
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0 m a . 0

APPARENT MASSES AND MOMENTS Ol? INERTIA WHEN Cd
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-
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TABLE IX .

LIFT, DRAG, AND MOMENT ON ENDLESS ELLIPTIC WLIN.DER _. .._

[Width SInohea,thickness2in-ah epwzl40.Ika par houv]

.

.— -

-.

-m“.: The&- \
Po@d w )oot ;*

N&l.%~

..-
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: ?0
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.7---- ‘.

*AStha testanglma were hi M Iractlonal, all IUeaenram
0, In dg. 15.

ents in TabIaIX &a fakf%lfromtha Orlglnalgrapheoflifh dreg,and moment vwsus

TABLE X . .

LIFT, DRAG, AND MOMENT ON ENDLESS THIN

[Width 5inches,air a- 40mh per hour]
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14st-
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m

TLift Drag

‘ound”par fontrun

-L 245
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-. a27
-.014
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.0696
.0404
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TABLE XI

LIFT, DRAG, AND MOMENT ON THIN ELIJPTIC WING

~@hWtiStidth5fn&%WXMMBh@

I
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1
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TABLE XII

MOMENT ON PROLATE SPHEROID ~
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1Data taken fromRafmence8.
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